View on GitHub

Merq

Internal application architecture via command and event messages

Icon Merq

Version Downloads License

Mercury: messenger of the Roman gods

Mercury > Merq-ry > Merq

Merq brings the Message Bus pattern together with a command-oriented interface for an extensible and decoupled in-process application architecture.

These patterns are well established in microservices and service oriented architectures, but their benefits can be applied to apps too, especially extensible ones where multiple teams can contribute extensions which are composed at run-time.

The resulting improved decoupling between components makes it easier to evolve them independently, while improving discoverability of available commands and events. You can see this approach applied in the real world in VSCode commands and various events such as window events. Clearly, in the case of VSCode, everything is in-process, but the benefits of a clean and predictable API are pretty obvious.

Merq provides the same capabilities for .NET apps.

Events

Events can be any type, there is no restriction or interfaces you must implement. Nowadays, C# record types are a perfect fit for event data types. An example event could be a one-liner such as:

public record ItemShipped(string Id, DateTimeOffset Date);

The events-based API surface on the message bus is simple enough:

public interface IMessageBus
{
    void Notify<TEvent>(TEvent e);
    IObservable<TEvent> Observe<TEvent>();
}

By relying on IObservable<TEvent>, Merq integrates seamlessly with more powerful event-driven handling via System.Reactive or the more lightweight RxFree. Subscribing to events with either of those packages is trivial:

IDisposable subscription;

// constructor may use DI to get the dependency
public CustomerViewModel(IMessageBus bus)
{
    subscription = bus.Observe<ItemShipped>().Subscribe(OnItemShipped);
}

void OnItemShipped(ItemShipped e) => // Refresh item status

public void Dispose() => subscription.Dispose();

In addition to event producers just invoking Notify, they can also be implemented as IObservable<TEvent> directly, which is useful when the producer is itself an observable sequence.

Both features integrate seamlessly and leverage all the power of Reactive Extensions.

Commands

Commands can also be any type, and C# records make for concise definitions:

record CancelOrder(string OrderId) : IAsyncCommand;

Unlike events, command messages need to signal the invocation style they require for execution:

Scenario Interface Invocation
void synchronous command ICommand IMessageBus.Execute(command)
value-returning synchronous command ICommand<TResult> var result = await IMessageBus.Execute(command)
void asynchronous command IAsyncCommand await IMessageBus.ExecuteAsync(command)
value-returning asynchronous command IAsyncCommand<TResult> var result = await IMessageBus.ExecuteAsync(command)
async stream command IStreamCommand<TResult> await foreach(var item in IMessageBus.ExecuteStream(command))

The sample command shown before can be executed using the following code:

// perhaps a method invoked when a user 
// clicks/taps a Cancel button next to an order
async Task OnCancel(string orderId)
{
    await bus.ExecuteAsync(new CancelOrder(orderId), CancellationToken.None);
    // refresh UI for new state.
}

An example of a synchronous command could be:

// Command declaration
record SignOut() : ICommand;

// Command invocation
void OnSignOut() => bus.Execute(new SignOut());

// or alternatively, for void commands that have no additional data:
void OnSignOut() => bus.Execute<SignOut>();

The marker interfaces on the command messages drive the compiler to only allow the right invocation style on the message bus, as defined by the command author:

public interface IMessageBus
{
    // sync void
    void Execute(ICommand command);
    // sync value-returning
    TResult Execute<TResult>(ICommand<TResult> command);
    // async void
    Task ExecuteAsync(IAsyncCommand command, CancellationToken cancellation);
    // async value-returning
    Task<TResult> ExecuteAsync<TResult>(IAsyncCommand<TResult> command, CancellationToken cancellation);
    // async stream
    IAsyncEnumerable<TResult> ExecuteStream<TResult>(IStreamCommand<TResult> command, CancellationToken cancellation);
}

For example, to create a value-returning async command that retrieves some value, you would have:

record FindDocuments(string Filter) : IAsyncCommand<IEnumerable<string>>;

class FindDocumentsHandler : IAsyncCommandHandler<FindDocument, IEnumerable<string>>
{
    public bool CanExecute(FindDocument command) => !string.IsNullOrEmpty(command.Filter);
    
    public Task<IEnumerable<string>> ExecuteAsync(FindDocument command, CancellationToken cancellation)
        => // evaluate command.Filter across all documents and return matches
}

In order to execute such command, the only execute method the compiler will allow is:

IEnumerable<string> files = await bus.ExecuteAsync(new FindDocuments("*.json"));

If the consumer tries to use Execute, the compiler will complain that the command does not implement ICommand<TResult>, which is the synchronous version of the marker interface.

While these marker interfaces on the command messages might seem unnecessary, they are actually quite important. They solve a key problem that execution abstractions face: whether a command execution is synchronous or asynchronous (as well as void or value-returning) should not be abstracted away since otherwise you can end up in two common anti-patterns (i.e. async guidelines for ASP.NET), known as sync over async and async over sync.

Likewise, mistakes cannot be made when implementing the handler, since the handler interfaces define constraints on what the commands must implement:

// sync
public interface ICommandHandler<in TCommand> : ... where TCommand : ICommand;
public interface ICommandHandler<in TCommand, out TResult> : ... where TCommand : ICommand<TResult>;

// async
public interface IAsyncCommandHandler<in TCommand> : ... where TCommand : IAsyncCommand;
public interface IAsyncCommandHandler<in TCommand, TResult> : ... where TCommand : IAsyncCommand<TResult>

// async stream
public interface IStreamCommandHandler<in TCommand, out TResult>: ... where TCommand : IStreamCommand<TResult>

This design choice also makes it impossible to end up executing a command implementation improperly.

In addition to execution, the IMessageBus also provides a mechanism to determine if a command has a registered handler at all via the CanHandle<T> method as well as a validation mechanism via CanExecute<T>, as shown above in the FindDocumentsHandler example.

Commands can notify new events, and event observers/subscribers can in turn execute commands.

Async Streams

For .NET6+ apps, Merq also supports async streams as a command invocation style. This is useful for scenarios where the command execution produces a potentially large number of results, and the consumer wants to process them as they are produced, rather than waiting for the entire sequence to be produced.

For example, the filter documents command above could be implemented as an async stream command instead:

record FindDocuments(string Filter) : IStreamCommand<string>;

class FindDocumentsHandler : IStreamCommandHandler<FindDocument, string>
{
    public bool CanExecute(FindDocument command) => !string.IsNullOrEmpty(command.Filter);
    
    public async IAsyncEnumerable<string> ExecuteAsync(FindDocument command, [EnumeratorCancellation] CancellationToken cancellation)
    {
        await foreach (var file in FindFilesAsync(command.Filter, cancellation))
            yield return file;
    }
}

In order to execute such command, the only execute method the compiler will allow is:

await foreach (var file in bus.ExecuteStream(new FindDocuments("*.json")))
    Console.WriteLine(file);

Analyzers and Code Fixes

Beyond the compiler complaining, Merq also provides a set of analyzers and code fixes to learn the patterns and avoid common mistakes. For example, if you created a simple record to use as a command, such as:

public record Echo(string Message);

And then tried to implement a command handler for it:

public class EchoHandler : ICommandHandler<Echo>
{
}

the compiler would immediately complain about various contraints and interfaces that aren’t satisfied due to the requirements on the Echo type itself. For a seasoned Merq developer, this is a no-brainer, but for new developers, it can be a bit puzzling:

compiler warnings screenshot

A code fix is provided to automatically implement the required interfaces in this case:

code fix to implement ICommand screenshot

Likewise, if a consumer attempted to invoke the above Echo command asynchronously (known as the async over sync anti-pattern), they would get a somewhat unintuitive compiler error:

error executing sync command as async

But the second error is more helpful, since it points to the actual problem, and a code fix can be applied to resolve it:

code fix for executing sync command as async

The same analyzers and code fixes are provided for the opposite anti-pattern, known as sync over async, where a synchronous command is executed asynchronously.

Message Bus

The default implementation lives in a separate package Merq.Core so that application components can take a dependency on just the interfaces.

Version Downloads

The default implementation of the message bus interface IMessageBus has no external dependencies and can be instantiated via the MessageBus constructor directly.

The bus locates command handlers and event producers via the passed-in IServiceProvider instance in the constructor:

var bus = new MessageBus(serviceProvider);

// execute a command
bus.Execute(new MyCommand());

// observe an event from the bus
bus.Observe<MyEvent>().Subscribe(e => Console.WriteLine(e.Message));

When using dependency injection for .NET, the Merq.DependencyInjection package provides a simple mechanism for registering the message bus:

var builder = WebApplication.CreateBuilder(args);
...
builder.Services.AddMessageBus();

All command handlers and event producers need to be registered with the services collection as usual, using the main interface for the component, such as ICommandHandler<T> and IObservable<TEvent>.

NOTE: Merq makes no assumptions about the lifetime of the registered components, so it’s up to the consumer to register them with the desired lifetime.

To drastically simplify registration of handlers and producers, we recommend the Devlooped.Extensions.DependencyInjection.Attributed. package, which provides a simple attribute-based mechanism for automatically emitting at compile-time the required service registrations for all types marked with the provided [Service] attribute, which also allows setting the component lifetime, such as [Service(ServiceLifetime.Transient)] (default lifetime is ServiceLifetime.Singleton for this source generator-based package).

This allows to simply mark all command handlers and event producers as [Service] and then register them all with a single line of code:

builder.Services.AddServices();

Telemetry and Monitoring

The core implementation of the IMessageBus is instrumented with ActivitySource and Metric, providing out of the box support for Open Telemetry-based monitoring, as well as via dotnet trace and dotnet counters.

To export telemetry using Open Telemetry, for example:

using var tracer = Sdk
    .CreateTracerProviderBuilder()
    .SetResourceBuilder(ResourceBuilder.CreateDefault().AddService("ConsoleApp"))
    .AddSource(source.Name)
    .AddSource("Merq")
    .AddConsoleExporter()
    .AddZipkinExporter()
    .AddAzureMonitorTraceExporter(o => o.ConnectionString = config["AppInsights"])
    .Build();

Collecting traces via dotnet-trace:

dotnet trace collect --name [PROCESS_NAME] --providers="Microsoft-Diagnostics-DiagnosticSource:::FilterAndPayloadSpecs=[AS]Merq,System.Diagnostics.Metrics:::Metrics=Merq"

Monitoring metrics via dotnet-counters:

dotnet counters monitor --process-id [PROCESS_ID] --counters Merq

Example rendering from the included sample console app:

dotnet-counters screenshot

Duck Typing Support

Being able to loosely couple both events (and their consumers) and command execution (from their command handler implementations) is a key feature of Merq. To take this decoupling to the extreme, Merq allows a similar capability as allowed by the TypeScript/JavaScript in VSCode: you can just copy/paste an event/command definition as source into your assembly, and perform the regular operations with it (like Observe an event and Execute a command), in a “duck typing” manner.

As long as the types’ full name match, the conversion will happen automatically. Since this functionality isn’t required in many scenarios, and since there are a myriad ways to implement such an object mapping functionality, the Merq.Core package only provides the hooks to enable this, but does not provide any built-in implementation for it. In other words, no duck typing is performed by default.

The Merq.AutoMapper package provides one such implementation, based on the excelent AutoMapper library. It can be registered with the DI container as follows:

builder.Services.AddMessageBus<AutoMapperMessageBus>();
// register all services, including handlers and producers
builder.Services.AddServices();

Dogfooding

CI Version Build

We also produce CI packages from branches and pull requests so you can dogfood builds as quickly as they are produced.

The CI feed is https://pkg.kzu.dev/index.json.

The versioning scheme for packages is:

Sponsors

Clarius Org Kirill Osenkov MFB Technologies, Inc. Torutek DRIVE.NET, Inc. Keith Pickford Thomas Bolon Kori Francis Toni Wenzel Uno Platform Dan Siegel Reuben Swartz Jacob Foshee Ix Technologies B.V. David JENNI Jonathan Charley Wu Jakob Tikjøb Andersen Tino Hager Mark Seemann Ken Bonny Simon Cropp agileworks-eu sorahex Zheyu Shen Vezel ChilliCream 4OTC Vincent Limo

Sponsor this project  

Learn more about GitHub Sponsors